

Designing Platinum features to mimic protein channels

Stefano Pagliara

Keyser Group, Cavendish Laboratory, University of Cambridge, UK

EFUG2011, Bordeaux, 3rd October 2011

- Channel-facilitated membrane transport
- Lab-on-a-chip fabrication technologies
- Chip fabrication exploiting Platinum features
- Single particle control
- Conclusions and outlook

Channel-facilitated membrane transport

Transport of solutes across living system membranes occurs through membrane protein forming water-filled channels

Maltose translocating the maltoporin channel in E. Coli

Understanding the transport mechanism

L. Kullman *et al*, *Biophys J* **82**, 803, 2002 E. M. Nestorovich *et al*, *PNAS* **99**, 9789, 2002

Model system

Lab-on-a-chip fabrication technologies

Challenge: 3D control

Nanoscale features

Microscale planar features Nanoscale planar features

with variable thickness

J. Yeo et al *Microsyst Technol* **16**, 1457, 2010 R. Sordan et al *Lab Chip* **9**, 1556, 2009

Chip fabrication exploiting focused ion beam

Chip fabrication. Photolithography and replica molding

Final device: patterned PDMS chip bonded to a glass slide

S. Pagliara, Lab Chip 11, 3365, 2011

Particle control by pressure gradient

Flow control of 300 nm particles through an array of microchannels with different cross section via computerized pressure-based flow control system

UNIVERSITY OF

S. Pagliara, Lab Chip 11, 3365, 2011

Particle manipulation with holographic optical tweezers (HOT)

Use of a spatial light modulator to split a single laser beam into many optical traps that can be independently positioned in 3D

Manipulation of different particles in different channels

Particle tracking

Tracking single particles diffusing through the different microfluidic channels

Particles are isolated from the background and 1 tracked by a custom- 1 made program based 0 on Labview 0

The microfluidic chip is filled with carboxylfunctionalized polystyrene particles with mean diameter of 500 nm dispersed in a 0.2 % solids (w/v) 5 mM KCl suspension

27 particles per 10 μ m³

The microscopic reservoirs are connected by five parallel channels with different width and thickness:

Particle diffusion through arrays of microchannels

Width	1.5	2	1.5	1.5	1
Thick.	1	1.5	2	1.5	0.5
Pred. Att.	1.5	2.5	2.5	1.5	0
Top Att.	2	2	3	1	0
Bot. Att.	1	3	1	1	0

Particle diffusion with binding sites

Looking for the optimal binding potential in protein channels

3 optical traps with different intensity placed in the middle of 3 different channels with the same dimension

Conclusions

Parallel channels with variable height and width

Particle diffusion inside microfluidic channels

Particle control through holographic optical tweezers and pressure gradient

L. Dagdug *et al*, *J Chem Phys* **134**, 101102, 2011 A. M. Berezhkovskii *et al*, *Phys Rev E* **80**, 020904, 2009

- Dr. U. F. Keyser
- C. Chimerel, O. Otto
- Dr. R. Langford
- Dr. D. G. A. L. Aarts (Department of Chemistry, University of Oxford)
- Prof. S. M. Bezrukov (Laboratory of physical and structural biology, NIH)

Thank you for the attention!

