Sample interactions during FIBbing

Hugo Bender

Chris Drijbooms, Patricia Van Marcke, Paola Favia, Olivier Richard, Jef Geypen, Koen Marrant, Eveline Verleysen

Leuven, Belgium

EFUG2009 Arcachon, 5 October 2009

Outline

- Introduction : FIB and application
- Ion beam effects
 - image quality
 - curtaining
 - redeposition
 - discharges
- Ion beam interactions with
 - Si
 - metals
 - Al
 - Ni
- Conclusions

FIB/SEM configuration

Ga

- "Dual beam"
- "CrossBeam"
- "MultiBeam"

Figures ©FEI

imec

FIB applications – Cross-section imaging

small structures (3D dimensions : 10-20 nm)

FIB applications – Cross-section imaging

huge structures : TSV's, stacked dies, ... (50 µm dimensions)

4 to 10 h milling in classical Ga-FIB !

faster FIB's needed !

imec

FIB applications – TEM preparation

Internal lift-out

FIB applications - Other

other applications at IMEC:

- Atom probe tips
- Back-contacting for SSRM
- Marking

general:

- Ion-beam lithography
- Device modification
- Micro-machining
- Biological

Interactions with the substrate

Ion beam image quality

2 keV 0.77nA

<u>50 µm ·</u> ssrm

HV tilt WD mag 2.00 kV 52 ° 15.6 mm 1 530 x

2/23/2008 |

30 keV 0.92nA

5 keV 1.0 nA

12/23/2008 HV tilt WD mag <u>50 μm</u> 3:19:52 PM 5.00 kV 52 ° 16.2 mm 1 520 x ssrm

Ion beam image quality

Redeposition

Redeposition

via etched from the backside through 50 µm Si

major redeposition occurs strongest on top side of open structures

imec

Curtaining

trenches with barrier/Cu seed layer only

- related to beam tails : worse at lower keV
- induced by differences in milling rate or topography
- can be "avoided" for TEM preparation : backside milling

imec

Curtaining : low-k/Cu

			EFTEM	AFM		
			low k/Cu relative	step from	step belov	v the lines
		k	thickness	Cu/lowk	in oxide	in Si
			%	nm	nm	nm
7	N ₂ /O ₂	lowest	40	7.6	4.9	3.4
4	in situ O ₂	medium	60	5.2	4.0	2.6
11	N ₂ /O ₂	highest	80	6.4	4.4	3.5

Curtaining : 50µm open TSV – TEM preparation

- Deep structures : mounting orthogonal
- Very high aspect ratio structures are difficult to fill with Pt

Curtaining : 50µm open TSV – TEM preparation

16

Curtaining : 50µm open TSV – TEM preparation

my 2.0

Discharge damage : breakdown charge

- Kelvin structure : area S ~ 20000 μ m²
- Breakdown field for CVD oxide ~ 10 MV/cm
- breakdown charge ~ 0.7 nC
 imaging 1-4 pA : 700-175 s
 crater with 2700 pA : 0.26 s

i.e contacting in advance necessary !

imec

 $V = \frac{Q_{FIB}}{C_{ox}}$

 $\mathbf{Q}_{\mathsf{FIB}} = (\mathbf{E} \times \mathbf{t}_{ox}) \times (\mathbf{\epsilon}_{o} \times \mathbf{\epsilon}_{r} \times \mathbf{S}/\mathbf{t}_{ox})$

 $= \mathbf{E} \times \boldsymbol{\varepsilon}_{o} \times \boldsymbol{\varepsilon}_{r} \times \mathbf{S}$

Discharge damage in Kelvin structure

cross-section through damage

> Hugo Bender - PT/MCA/SA imec 2009 | 19

Ion beam interactions : Si

- many materials are completely amorphized by the ion beam
 - Si, Ge, III-V, ...
 - silicides
 - many oxides
- indication for amorphisation : absence of channeling contrast

Surface protective layers

- properties
 - > 150 nm
 - not reacting with the top layer
 - contrast in TEM with top layer, preferably amorphous, light elements
 - not planarising the topography
 - stress free
- options
 - wafer process line : a-Si, poly-Si, stress-free nitride, ...
 - low-T CVD glass
 - sputtered glass
 - sputtered/evaporated Al or Ni
 - e-beam Pt or W

e-Pt capping

- shrinkage of the low-k and collapse of the barrier
- Pt diffusion in a-Si

Si sidewall damage

30 keV Ga

reduction by 5 keV Ga 15°

imec

Ion beam interactions : metals

- channeling contrast occurs in all freshly milled metal, e.g. Al, Cu, Ni, W, Au, TiN, ... indicating that full amorphisation does not occur
- no channeling in TiAl₃

Ion beam interactions : metals

30 keV ion-Pt deposition

C-rich interfacial layer / Pt and Ga in top of the metal no amorphous layer

Al / thin oxide / Si : TEM - HREM

Al / thin oxide / Si : HAADF-STEM – EDS/EELS

30 keV Ga

EDS/EELS :

- **accumulation of Ga** in Al near the interface

- width of the Ga profile is much larger than on the images and depends on the sense of the linescan

Al / ion-Pt – trench sidewall : TEM / HAADF-STEM

30 keV Ga

imec

(no tilt during clean : $\sim 2^{\circ}$ slope

Al / ion-Pt – trench sidewall : EDS/EELS

Hugo Bender - PT/MCA/SA imec 2009

29

imec

Ion beam interactions : Ni on Si

- evaporated Ni on Si
- silicide formed at the interface during the deposition

specimens

- chunk / plan parallel specimen : finished with 30 keV Ga and tilted to compensate the slope
- chunk / needle specimen as for atom probe : finished with 2 keV Ga, no tilt possible

Ni on Si – 30 keV FIB lift-out - HAADF-STEM

Ni on Si – needle finished 2 keV - TEM

imec

Ni on Si – needle finished 2 keV - TEM

Ni on Si – needle finished 2 keV – HAADF-STEM

Ni reaction

- Ni reacts with the amorphized Si, forming a Ni-silicide layer on the outsides of the TEM specimen (a ring in case of needle sample)
- the "10% Ni" layer thickness :
 - 30 kV 3.5 nm
 - 2 kV 8.7 nm

thickness difference likely related to different slope : " $0^{o''}$ for the chunk vs " $11^{o''}$ for the needle

Conclusions

- semicondutors : amorphise under the Ga beam
- metals :
 - Ga implanted
 - Al : Ga diffuses to interfaces and grain boundaries
 - Ni : silicide formation
- outlook : needs for the future
 - better low keV image quality
 - faster milling systems
 (plasma-FIB, higher energy, higher currents)

257 imec Years of Making Technology Fly