Precise Ion and Electron Beam Processing for Nano-Structuring

Regina Korntner, Hans Loeschner and Elmar Platzgummer
IMS Nanofabrication GmbH
Vienna, Austria

Outline

- Short Introduction to IMS
- Technology Introduction
 - History of Ion and Electron Beam Structuring
 - Interaction with of Particles with Matter and Instrumentation
- Application Overview
- Challenges and Demands
 - Resolution
 - Productivity

One possible solution:

- IMS Large Field Projection Optics
 - Projection Mask Less Lithography (PML2)
 - Projection Focused Ion multi-Beam (PROFIB)
Introduction to IMS

Austrian SME „Think-Tank“ with hands-on experience

IMS Platform Technology for Micro- and Nanofabrication

History of Electron Beam Structuring

1931: First EM (TEM) by Ernst Ruska

Nobel prize: 1986
Principles of Ion Beam Interactions

IonShaper Simulation Program:
Elmar Platzgummer (IMS Nanofabrication),
Alfred Biedermann (TU Vienna)

1st order sputtering

2nd order re-deposition

Experiment: parallel FIB line scans
(Emmerich Bertagnolli, Alois Lugstein, TU Vienna)

redemption of silicon
Principles of Ion Beam Interactions

Gas Enhancement Factors:
The enhancement factor indicate the removal efficiency of the FIB process with etchant gas relative to ion sputtering without etchant.

<table>
<thead>
<tr>
<th></th>
<th>SiO₂</th>
<th>Si₃N₄</th>
<th>Al</th>
<th>W</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>XeF₂</td>
<td>10</td>
<td>8</td>
<td>-</td>
<td>6</td>
<td>>100</td>
</tr>
<tr>
<td>Cl₂</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Br₂</td>
<td></td>
<td>15</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>H₂O</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: FIB Folder TU Berlin, Institut für Hochfrequenz und Halbleitertechnologien

Courtesy: Helmut Langfischer
Principles of Instrumentation

Source: John Melngailis, University of Maryland, MNE 2003

E-beam tool concepts

Technical setup of EBL tools

Source: SPIE Handbook of Microlithography
Application Overview (Selection)

Typical Industrial FIB Applications

- Mask repair: defect removal & modification
- IC modification / Design edit: cut and paste operations
- SEM / TEM sample preparation: failure analysis
- Imaging & SIMS (visualizing of grain structures)
- Future: Hard disc heads

More todays Applications

- MST (prototype and development stage)
- Fabrication of scanning probe tips
- Micro Lenses and Mirrors (Aspherics)
- Nano Science and Technology!

Nanotechnology Application: Examples

Photonic Array QD

- InAs quantum dot strain field
- Etched or sputtered hole

Courtesy: FEI Company

QD

Courtesy: Gottfried Strasser
Nanotechnology Application: Example

Nano Air Wires

- **Parallel Resistance Air-Wiring**
 - Growth time: 2.8 min

- **Phenanthrene gas (C_{14}H_{10})**
 - Melting point: 99°C
 - Boiling point: 340°C

- **Amorphous carbon pillar**

Source: Shinji Matsui, Himeji Institute of Technology, MNE 2003

Challenges and Demands

Talk at the MNE 2003, John Melngailis:

Nanofabrication Challenges

- Milling at finer dimensions
 - (lower energy beams, different ion species)
- Ion induced deposition at finer dimensions, understanding deposition mechanisms
- Developing novel fabrication techniques

Examples:
- Quantum Computing
- Nano Imprint Stamps
- Optical Components

Source: John Melngailis, University of Maryland, MNE 2003
Quantum Computing: Demands < 10nm

J. Gierak, Nano-fabrication with Focused Ion Beams, Poster EIBPN 2003

J. Gierak, Nano-fabrication with Focused Ion Beams, Poster EIBPN 2003

Fabrication of Nano Imprint Templates

Standard 6-inch x 6-inch x 0.250-inch fused silica blank

www.molecularimprints.com

Template fabrication process, typically accomplished with an e-beam writer, limits the resolution of the features.

www.molecularimprints.com
Optical Components: DOE, Fresnel Lenses

Optical Component Market Sector

Realistic market of a few $100 million increasing to, perhaps $300 million by 2005

Nexus Market Analysis for Microsystems, 2002

e.g.: Micro Lenses and Lens Arrays for focussing and / or redirection optical beams:
Maximise optical coupling between (laser) sources and fibre or between input and output fibres of optical switch

Resists - 3Dimensional Lithography

Gradation Curve

Contrast

Conventional lithography

Positive resist

Negative resist

E-beam lithography and fabrication process

Copyright by Raith 2004
Introduction to IMS

IMS Platform Technology for Micro- and Nanofabrication

- Resist based EBDW Nanolithography
- Resist-less direct Micro- and Nanofabrication
- PML2 Projection Mask-Less Lithography
- PROFIB Projection Focused Ion multi-Beam tool

Large-Field Particle-Beam Optics

@ 200xReduction

- Ion / Electron Source
- 20 µm – 1 mm
- 0.1 µm – 5 µm
- 1 µm – 20 µm
- 10 – 100nm

Micro Systems Technology

- SC Analytics, Sensors, Lab-on-Chip, etc.

Nanotechnology

- Nanoelectronics, Nanophotonics, BioNanoTechnology, etc.
PML2 Multi e-beam, single column

- **Single** Electron source
- **Low beam energy** at Programmable Aperture Plate System (APS)
- **200x reduction** projection optics with 2 cross overs
- Scanning Wafer Stage

PML2 Dynamic Pattern Generation

- 5 keV electron beam from single source
 - **Cover Plate**
 - **Blanking Plate** (MEMS / CMOS)
 - **Aperture Plate**
- 200x reduction
- 5 µm
- 25 nm at wafer
PML2

Stepwise Exposure

High redundancy

Projection Focused Ion multi-Beam (PROFIB)

- **ion milling**
 - stencil mask
 - patterned ion beam
- **beam assisted deposition**
- **ion beam modification**
 - precursor gas
 - homogenous deposition
 - depth selective

ion species: H+, He+, Ar+, Xe+, ...

resolution: 10nm

exposure field: 25 µm x 25 µm

1 million 10nm dots per second (~ 10^{16} ions/cm²)

IMS Nanofabrication GmbH

EFUG 2004, EMPA Akademie, Oct 4, 2004
Projection Focused Ion multi-Beam (PROFIB)

PROFIB Target Specs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Envelope</td>
<td>150 mm diameter; 10 mm thickness</td>
</tr>
<tr>
<td>Image Field</td>
<td>40 µm diameter (25µm x 25µm)</td>
</tr>
<tr>
<td>Resolution @ 1nA total Ar+ ion beam current</td>
<td>10 nm</td>
</tr>
<tr>
<td>Surface roughness</td>
<td>< 5 nm, depending on material and feature depth</td>
</tr>
<tr>
<td>Feature Shape</td>
<td>adjustable shape, aspect ratio 2-3 for sputtering or 10-20 for reactive etching or deposition</td>
</tr>
<tr>
<td>Etching Rate</td>
<td>10 - 100 nm/s</td>
</tr>
<tr>
<td>Removal Rate</td>
<td>25 – 250 µm³/s</td>
</tr>
<tr>
<td>Types of Materials</td>
<td>silicon, metals, ceramics, glass, compounds, …</td>
</tr>
</tbody>
</table>
Projection Focused Ion multi-Beam (PROFIB)

<table>
<thead>
<tr>
<th>FIB</th>
<th>PROFIB</th>
</tr>
</thead>
</table>
| Ion Beam Species | Ga⁺, H⁺, He⁺, Ar⁺, Xe⁺, ...
| Ion Beam Current Density | ~ A/cm², ~ mA/cm² |
| Advantages | higher productivity by 3 orders of magnitude |

- Simulation
- Fresnel Zone Plate
- Sputter time: 30 s
- Current Density: 0.1 nA/µm²
- Profib @ 10 nm

Resolution

Acknowledgements

Andrea Bertoni, University of Modena
Albert Biedermann, Vienna University of Technology
FEI Company
Kleindiek Nanotechnik
RAITH GmbH
Gottfried Strasser, Vienna University of Technology
Bernd Volbert, Namitec
Carl Zeiss SMT
Carl Zeiss NTS (former LEO)

and IMS collegues:
Christoph Brandstätter, Stefan Cernusca, Marco Kuemmel,
Helmut Langfischer and Thomas Narzt