Focused Ion Beam Microstructuring

Philipp M. Nellen, Rolf Brönnimann, Joachim Reiner, Stephan Meier, Andreas Beu

EMPA

Swiss Federal Laboratories for Materials Testing and Research CH-8600 Dübendorf, Switzerland E-mail: rolf.broennimann@empa.ch

Contents

 Introduction 	Emerging applications	
	Hurdles to get over	
 Basic experiments 	Dots, lines & squares	
	Milling strategy	
 Applications 	Fresnel structures	
•Outlook		

State of the Art •TEM lamella preparation •Cross sectioning •Failure analysis

Emerging applications

- MEMS device fabrication, modification
- •Scanning probe microscope tips
- Micromedical device structuring
- •Micro- and nano-print master fabrication (e.g. diffractive optical elements)
- •Arbitrary shapes...

Hurdles to get over

Single dots and single line writing

Single lines writing

Probe EMPA 173

Single lines: ion current 100pA dwell times: 0.1, 1, 10, 30ms line spacings: 102,76, 51, 25.6, 12.8nm overlapping effect – redeposition – self-focusing effects (grazing incident ions reflected)

Milling

Chemical composition

TEM-EDX (energy dispersive x-ray) analysis

Milling strategies

Squares

strategy	а	b	с
1) 1 ms/dot/pass single pass	left to right / single pass	symmetrical: middle to edge / single pass	symmetrical: edge to middle / single pass
2) 0.01 ms/dot/pass 100 passes	left to right / 100 passes	symmetrical: middle to edge / 100 passes	symmetrical: edge to middle / 100 passes

Milling strategies

Squares

Squares: (cross sections)

312x311 dots

distance 12.75 nm

130 pA ion current

total dose per point 0.8 fC/nm²

strategy	а	b	с
1) 1 ms/dot/pass single pass	left to right / single pass	symmetrical: middle to edge / single pass	symmetrical: edge to middle / single pass
2) 0.01 ms/dot/pass 100 passes	left to right / 100 passes	symmetrical: middle to edge / 100 passes	symmetrical: edge to middle / 100 passes

Milling strategy

Analysis of c1: process

sequence of structures with increasing number of lines from each edge towards the center: 5, 10, 15, 20, 40, ..., 140, 145, 150, 152, 154, 156 (completed half of square).

redeposition and self-focusing effect (angle dependent milling and reflected ions)

Milling strategy

Analysis of c1: geometry

width of milled area and remaining ridge vs. number of lines

Milling strategy

Analysis of c1: geometry

redeposition and self-focusing effect (angle dependent milling and reflected ions)

Microlens structure 1

(on glass)

Det Mag SRot Tilt 2 μm CDM-I 25.0 kX 180.0° 0.0° EMPA 840905 stm •milling along cartesian coordinates (line by line)

- •1000 pA ion current (electron charge neutralizer)
- •dwell times proportional to Fresnel pattern, maximum dwell time 40 μ s •sharp edges blurred (overlapping of wings of ion beam)
- •curvature slightly concave instead of convex

•depth of pattern is a factor of 3.1 smaller than required (the theoretical curve scaled down)

Fresnel structure 1 on glass: overview, cross section, comparison with calculations

Microlens structure 2

(on Si)

- •milling along polar coordinates (circle by circle from inside out)
- •134 pA ion current
- -dwell times proportional to Fresnel pattern, max dwell time 36.2 μs
- •pattern was repetitively milled 120 times
- •form much better preserved (sharper, better correspondance)
- •depth of pattern is a factor of 6.3 smaller than required (the theoretical curve scaled down)

Fresnel structure 2: overview, cross section, comparison with calculations.

Microlens structure

(on Si)

•milling along polar coordinates (circle by circle from inside out)

•140 pA ion current

•dwell times proportional to Fresnel pattern, max dwell time 36.2 μs
•pattern was repetitively milled 1440*0.6 times
•switching from concave to convex observable
•depth of pattern is nearly correct

Conclusions and Outlook

Useful tool for microstructuring

Steep slopes / large aspect ratio reduce accuracy

Writing strategy improves structuring

Basic experiments: single line milling and milling strategy

Input for modeling of sputtering and redeposition

With improved predictability of microstructuring with FIB new applications can be envisaged:

MEMS device prototyping and modification scanning probe microscope tips fabrication micromedical devices sensor structuring micro- and nano-print master fabrication (e.g. diffractive optical elements), and others

